S Georges' SPorts Centre, Scott Brown Rigg, Architects

St George’s College Iconic Solar Sports Hall

St George’s is an independent mixed Roman Catholic co-educational day school in Weybridge Surrey.   The school have recently constructed a new Sports Hall for the school as their existing sports hall was only sized for 500 students (all boys).  The new sport hall now caters for over 1000 pupils (both boys and girls) over a wide range of sporting activities.

The new hall is a flagship architectural building, designed by Scott Brown Rigg Architects, with many unique design features that required careful integration of the solar PV.

The structure of the building is made from curved glulam columns and roof beams, which support a plywood deck.  Above the roof sites 150mm insulation, finished with a Sika Sarnafil single-ply roof membrane.  The roof is curved in two directions much like the Olympic Park velodrome, and also features diamond-shaped roof ventilation towers.

Careful Integration of Solar

As such, the design needed to account for the following sensitivities:

  1. As a high-end architectural project, aesthetics were paramount to the client.
  2. The installation mounting system needed to work with the curved surface of the roof.
  3. We needed to avoid shade from the ventilation towers.
  4. The chosen system needed to be lightweight so as not to compress the insulation, or led to puddling of water
  5. The system needed to be non-penetrative
  6. We needed to install sufficient solar PV to meet overall building CO2 targets.

The building carbon targets implied the building had a target of 32kWp of solar PV to generate 29,688kWh of electricity per year.  To meet this brief, we installed a system of 119 JA Solar 270W modules, connected to a single Solis 30kW inverter.

 

Sika SSM1 mounting system

Joju Solar are the solar energy partners of Sika Sarnafil who manufactured the roof membrane system.  Working closely with them and the main roofing contractors, Malone Roofing, we designed and delivered what we to believe to be a prime example of sensitive architectural integration of a commercial solar PV roof.

The chosen mounting system was the Sika Solar Mount SSM1, which offers several unique features, ideal for this project.  The mounting system consists of plastic triangular frames pitched at 15 degrees.  These frames use rubber fixing flaps, that sit over the frames which are then rubber-welded directly to the roof membrane.  Because the frames are bonded to the roof surface, the system is ballast-free, and therefore very lightweight.  This not only simplifies construction but helps from a structural engineering point of view, especially in case such as this where the span of the roof is large.  It also prevents compression of the insulation layer and puddling of water on the roof.

Uniquely, the mounting system and the roof membrane itself are covered under a single point warranty.  As Sam Rogan, Sika Sarnafil Technical Advisor explains: “The SikaSolar system offers a low profile panel with high output,  that is fully compatible with Sarnafil single ply roofing membranes”.  This avoids any potential conflict between the multiple contractors on-site, as there is a single holder of risk and responsibility.

Primarily designed for flat roofs, the SSM1 is limited to being installed on roofs of less than a 10-degree pitch.  We therefore restricted our array to those unshaded areas of the roof that met this design requirement.  The area chosen was such that optimisers were not required and the system could be strung on a single 30kW inverter.

As a further step to enhance the aesthetics of the installation, the DC cable routes were laid in channels cut into the insulation membrane, which were then covered with the main roofing membrane.  This removed the need for an unsightly cable tray running across the roof and preserved the clean aesthetics of the building.

 

(Images 1&3 courtesy of Scott Brown Rigg Architects)

Find Out More

  • Our PV design team is on hand to help you realise the solar part of any new build project, large or small
  • We have even integrated a bespoke solar PV array into the roof of Salisbury Cathedral
  • Solar schools like St George’s are a speciality of ours – find out more about the hundreds of solar schools we’ve already built
Oxford Brookes, Sunset, Solar PAnels, Salix Finance

A Hub of High Efficiency at Oxford Brookes University

Oxford Brookes is one of the UK’s leading modern universities with an international reputation for teaching innovation and excellence. They are also in the top tier of universities leading the way when it comes to limiting their effect on the environment*. Their 35% reduction in carbon emissions since 2005, already puts the university ahead of its 2025 target of a 34% reduction, but this hasn’t stopped Oxford Brookes wanting to push on and do more – to continue to reduce its environmental impact and create a student campus that truly supports sustainability, as well as inspiring students to significantly reduce wasted energy use and carbon emissions.

 

Funding and Fusion 21

When Oxford Brookes learned they could secure project funding through Salix Finance (interest-free funding for the public sector to improve energy efficiency, reduce carbon emissions and lower energy bills), the university was keen to increase its existing solar PV capacity and looked into procurement routes to find the perfect solar PV partner.

They discovered Joju Solar through the Fusion 21 public sector procurement framework and after surveying the university site, we helped to identify five more suitable buildings for solar PV – designing and procuring the best possible system within Salix funding parameters. The project couldn’t cost more than £222 per tonne of carbon saved (over the lifetime of the project), with a project payback of 8 years.

 

A greater yield with SunPower

As Oxford Brookes University was committed to generating as much as possible in the available space, to “do more with less” and get the most value from existing building spaces, we used high efficiency SunPower modules on the Buckley Building, John Payne Building, Lloyd Building, Sinclair Building and the International Centre.

Although rare for a commercial project, these state-of-the-art panels gave Oxford Brookes greater output per square metre of roof space, adding just under 300kWp and doubling their solar PV capacity. From a cost perspective, this approach still worked within the Salix Finance funding model, so it was a winner all round!

Despite the installation being initially postponed due to Covid19, the 700 panels were installed in November 2020 and it was an absolute pleasure working with Oxford Brookes University to extend their visible commitment to a low carbon future by creating a high efficiency array – generating 224,912kWh per year, with a 57 tonnes CO2 saving.

 

Discover more

  • We love working in the education sector and Solar schools is one of our specialities.  We can deliver fully funded installations across your school or university estate, so do find out more about our solar for schools and education
  • Discover more about Solar PV and how we can help you.
  • SunPower modules are the state of the art – offering efficiencies of more than 23%.
Noah'sArk, Green roof, biosolar, aerial, BArnet

A Biosolar Roof for Noah’s Ark

Noah’s Ark Children’s Hospice make moments matter. They help seriously unwell babies, children and their families make the most of the special time they have together, providing clinical, emotional and practical support to over 300 families across North and Central London and Hertsmere.

 

The hospice wanted to support an increase in the scale and quality of their work and to do that, they needed a new building. ‘The Ark’, a highly sustainable ‘home-from-home’ and an inspiring space for palliative care, relaxation and adventure, launched in September 2019 and was constructed within their nature reserve in Barnet, becoming the first new hospice building in London for ten years.

 

The realisation of The Ark was a combination of an incredibly successful fundraising appeal which raised over £12million, architectural design by Squire & Partners and collaboration between a number of construction and sustainability professionals – all playing their part to create this iconic new build. At Joju Solar, we got involved when creating ‘a green roof with a difference’ became part of the plan.

 

A Green roof with added solar

Bridgman & Bridgman in partnership with Bauder Ltd began the construction of The Ark’s green roof and the idea was to create a living, wildflower meadow in the sky, to support native wildlife as part of the building’s strong connection with its natural setting.

 

It was also important to make The Ark as self-sufficient as possible from an energy perspective, which meant installing solar PV on the green roof. The solar was being funded by the community through Energy 4 All, which significantly reduced the overall capital expenditure of the project (saving over £84,000 in energy costs to the client over a 20-year period). We’ve worked closely with Energy 4 All on a number of community-owned, green energy projects and they invited us to be part of the team – to install 171 solar PV panels so that both green roof and solar worked together in harmony.

 

When installed correctly, that’s exactly what Biosolar roofs create. PV panels can work more efficiently on a green roof, as green roofs help to keep the temperature around the panels at the optimum 25 degrees celsius. A hotter micro climate can result in loss of panel efficiency, so green roof and solar is the perfect partnership from that perspective. Efficiency was critical in this very special new build, to make sure the hospice would receive as greater yield as possible.

 

Solar panels can also create shaded areas underneath them, which encourages a wider variety of vegetation to grow on a green roof. That means the combination can help different types of species to thrive and in a nature reserve setting, this worked beautifully.  Look how the wind protection allows taller species to grow near the panels!

 

The installation utilised Bauder BioSOLAR – an integrated mounting system made stable by green roof layering and vegetation, removing the need for penetrating the waterproofing to secure the mounting units to the roof. It was ready for us to install the solar panels on to, with the frame sitting around 300mm higher than the line of the roof. This allowed growing room for vegetation without blocking any light to the panels and also meant light and moisture could reach beneath them to support any vegetation or wildlife below.

 

The seeds were planted following our PV solar install and once the mains electricity install was complete, we returned to commission the 46.17kWp system.

 

Green roof and solar – a winning combination

The combination of green roof and solar on The Ark was a winning one. Not only did it encourage biodiversity and fulfil the goal of generating the building’s electricity, the project won the “Roof Gardens/ Living Wall Installations – Commercial Roof Garden or Podium Landscaping – Under £500k” award in the BALI National Landscape Awards 2020. It’s also the first time a community funded green roof with PV panels has been used in the UK.

 

As the Mayor of London, Sadiq Khan, said when the building opened:

“Noah’s Ark has been a beacon of light for the children and families it serves, so I’m delighted that they have a brand-new home,”

and we’re proud to have been able to play a small part in helping to make this peaceful sanctuary sustainable.

Discover more

 

Egni Coop, Graint Thomas Velodrome, Newport Councl, largest solar roof in Wales,

Egni Coop’s Welsh Community Solar Programme

Egni Coop and Joju Solar have developed and installed the most ambitious community solar scheme in Wales, including the largest single community solar rooftop at Newport’s Geraint Thomas velodrome. It’s quite a story – here’s how we did it.

READ MORE

Salisbury Cathedral, solar, spire

The Salisbury Cathedral Solar Roof

How did a small local community energy group end up building one of the most iconic renewable energy projects in the UK?  Well, it turns out dedication, perseverance, and a little good fortune are all you need.

Salisbury Community Energy

Salisbury Community Energy is a relatively new community energy group.  They were formed in 2017 by a group of Salisbury residents who were trying to address climate change within their local area.  Director Caroline Lanyon explains “When we started we had a simple question: how can we get more renewable energy in Salisbury?”

From small beginnings …

In their early years, Salisbury Community Energy looked at a wide range of possible projects, and all possible renewable energy technologies.  They finally settled on developing a solar power portfolio, as potential hydropower schemes on rivers in the City looked complex due to Environment Agency concerns about the flood plain, and potential opposition from local anglers.

The group started scoping out a portfolio of solar PV projects in Salisbury, mainly on local schools, but with other large community buildings also considered.

Solar on Salisbury Cathedral?

Almost inevitably, someone suggested that the group should approach Salisbury Cathedral about the possibility of installing solar panels there.  However, the group didn’t expect much of a response.  “Local environmental groups had been pushing for the development of a solar array on the Cathedral since the 1990s”, said Caroline “But they’d always been refused”.

But as a new group, Salisbury Community Energy thought it was worth a shot, and they decided to try the door one last time.  To their surprise, it opened!

The Planning Process for Solar on churches

Canon Treasurer Robert Titley from Salisbury Cathedral was instrumental in making the scheme happen. As a local community group, Salisbury Community Energy found a receptive ear as Robert was already implementing a range of green initiatives across the Cathedral, including draft-proofing the medieval building, moving to a green tariff energy and installing LED lighting.  His faith and environmental vision went hand in hand.  “We are called to preach good news, and through this we are taking another small step toward being good news for God’s earth and not just part of the problem”.  Solar panels were an obvious next step, and the idea of a high-profile project appealed.  “It’s important to send a message to the rest of the city”, he added.

At around the same time, the Rt Rev Nicholas Holtam, Bishop of Salisbury was appointed the Church of England’s lead bishop for the environment.  He has recently signed a letter to the Government asking for the environment to be part of its post-COVID-19 plans.  He was naturally fully supportive of the idea of putting solar panels on the Cathedral.

However, before the project could happen, the proposal needed to pass through ecclesiastical planning.  Town planning rules cover development on most churches and local council planning departments adjudicate on them.  But as a Cathedral, especially a unique historical one, the proposals had to pass the scrutiny of church bodies instead.  As one might imagine, it is not an easy process to pass through the many internal committees.  They are very stringent, and rightly so – they do, after all, have a duty to protect these buildings of national importance.

Eventually, the scheme was approved, subject to specific design criteria being met:

  • The panels must not be visible from the ground, or higher ground in the Salisbury area
  • There must be no drilling into the historic structure of the building
  • There must be no damage to the lead roof covering

But just as the project was gaining traction – a new hurdle appeared.  The Government planned to remove feed-in tariffs in April 2019, leaving just months to get this project, and other schools in the portfolio pre-accredited.

The Salisbury Cathedral solar design team

Salisbury Community Energy approached Energy4All’s Schools’ Energy Coop for advice.  They had years of experience in pre-accrediting community energy sites. They agreed to help with early project development stages, such as gaining EPC certificates.  They also managed the financial raise for the scheme when it went eventually ahead.

And this is where Joju Solar joined the team!  As the long-term installation partners for the Schools’ Energy Coop, we were asked to come up with a design that met the ecclesiastic planning committees stringent design requirements.

The project team chose the cloister area for the solar panels. The panels are not visible from the ground, and there is a parapet wall surrounding them.  This helps keep the panels hidden from view but does give local shading issues.  The church left some dummy panels on top of the cloister roof for several months before the build to see if these would be visible from the surrounding area.  It turns out they weren’t!

Because no direct fixings were possible, we decided to use panels mounted on a ballasted frame.  As a roofing material, lead is quite unique in that it is soft, and it moves around a lot as it expands and contracts in the sun.  Clamping on to the ‘broom handle seams’ is not a possibility as it would soon cause a hole around the fixing points.

Joju decided to work with solar mounting system specialists Sunfixings on this project.  Sunfixings have extensive experience in designing solar PV mounting systems for lead roofs and were an obvious technology partner for this project.  The roof has a stepped surface, and is generally a little uneven and not quite straight (it turns out our laser lines are more accurate than 800 years old craftsmanship).  The design team settled on a fully adjustable frame to ensure there was good contact at the right places over the surface of the roof.

It’s not just the panels; of course, there is also the wiring to consider.  The cables were collected under the array, then ran in a discretely positioned basket tray, on rubber feet, following the line of the roof.  The wires ran to the new café and gift shop section, which as a modern extension meant we could finally drill a hole to get the cables to the inverter and consumer unit inside.

Salisbury Cathedral’s Solar Roof

The solar array was finally built on the Cathedral in July 2020, as soon as we were able to come out of lockdown safely.  The system features 37kW of high-efficiency Sunpower 400W modules.

The system was formally opened by The Bishop of Salisbury.  His words, perhaps best sum up the scheme:  “The Church of England is working hard towards a Net Zero carbon footprint by 2030. I am delighted that Salisbury Cathedral is making a contribution that takes us towards this. With clear purpose and helpful partnerships even iconic buildings can make a difference towards sustainability. In these strange times the possibilities of living differently seem all the more important and this project even more significant.”

So, was this iconic project all just a stroke of good luck?  Did it only get built because the community group approached clergy who happened to be passionate about the environment? And then chanced to meet other partners to help with the financial raise, project development, design, and build?

Or maybe we all make our own luck, and the more we try to make our visions a reality, the more likely we are to find others who feel the same way. And then great things can happen. We like to think so, and we expect to see more historic buildings sensitively incorporating solar over the coming years.

 

All photos by the sublime Ash Mills.

Find out more

solar roof tiles, integrated solar, BIPV, ThamesWey

ThamesWey’s Innovative Battery Microgrid

ThamesWey has recently installed an innovative solar/battery microgrid at a housing estate in Woking.  ThamesWey are a private company, owned by Woking Borough Council, set up to drive carbon reductions and the wider sustainability agenda in the Borough.  They own and manage over 600 properties in support of the Council’s Housing Strategy. ThamesWey offer a range of private rental properties including homes at more affordable rents and key worker accommodation.   ThamesWey have a long history in the solar energy sector; back in the 2000’s, and long before feed-in tariffs were established, they were the leading institution installing solar panels in the UK.  They installed their first solar panels back in 2001, and had installed over 5000 solar panels by 2012.

“It’s in our business plan to trial new technologies, so we wanted to run a demonstrator of centralised battery storage”, explains Rachel Lambert, ThamesWey’s Environmental Projects Manager.  “We wanted to find a solution that saved carbon, whilst simultaneously offering a strong economic case.  At the current state of technology, that required a highly innovative project”.

A Microgrid Serving 14 homes

The site chosen was a group of 14 homes, which already had solar PV installed as integrated solar roof tiles on 12 of the properties since 2010.  ThamesWey built the properties to code 5 of the former Code for Sustainable Homes , and designed them to run off their own private wire network.  ThamesWey import electricity into a substation, and then distribute  this electricity on to the connected homes.

“We came up with a concept of installing batteries at the substation as part of our own microgrid”, said Sam Pepper, Environmental Projects Officer.  “The idea was to capture the excess solar electricity that was being produced during the day, and to use this to benefit all the homes on the network, including those without  solar”.

Developing a microgrid with batteries

ThamesWey asked Joju Solar to help design and implement the scheme.  We undertook extensive modelling of the site, looking at ½ hourly usage and generation across the homes, and predicting what would happen if batteries were incorporated.

This was also a full financial model. ThamesWey buy in electricity that is priced every ½ hour on a real time tariff.  As a ‘commercial’ user, ThamesWey also incur high additional charges of 8p/kWh (called DUoS charges) at peak times between 4pm and 7pm every weekday.  We looked at the savings possible for a variety of battery models and operational regimes.

We settled on the installation of 3 x Tesla Powerwalls for a number of reasons:

  • Tesla offer the cheapest storage per kWh of battery capacity
  • Using 3 Powerwalls allows 40.2 kWh of electricity to be stored.
  • The 3 Powerwalls can supply 15kW of instantaneous power, allowing the aggregated load of the homes to be fully covered for most of the year
  • The Tesla Powerwall can be set up to import cheap, cleaner, night time electricity in winter months, adding additional savings when there isn’t excess solar available
  • The Tesla Powerwall can be set up to preferentially discharge when electricity prices are high to maximise savings – in this case during the peak DUoS periods of weekday evenings. By eliminating consumption across the 14 homes in the peak period, DUoS charges become zero.
  • An additional benefit of load shifting out of the peak period is that this is also when the grid is the dirtiest in terms of utilising fossil fuels.

Overall the scheme offers the best economics we have seen for behind the meter batteries, with a full return on investment within the 10 year warrantied lifetime of the Tesla Powerwall.

This centralised approach is approximately 5 times cheaper than the alternative of installing a battery in each home, showing the advantage of deploying batteries into a microgrid.

Installing a battery Microgrid

Joju installed the batteries at the substation over a 3-day period.  The only issue faced with the installation was making the final connection between the batteries and the supply in the substation, which needed to be switched off to manage the works safely.  Homeowners were informed in advance by letter that their supply would be briefly interrupted on the final day, and the necessary connection was made within 15 minutes.

Batteries for Sites with Landlord’s Supply

The ThamesWey project is a clear demonstrator of the strong economic case for batteries within a microgrid context.  At first glance it might seem that this kind of site is fairly unique, but the same approach can be adopted wherever there is a landlord’s electricity supply in place – most commonly in blocks of flats.  Any situation where the landlord buys electricity into a building (or site), and then sells on electricity to tenants, can benefit from battery storage behind the landlords meter (but in front of the tenants).  It’s a model Joju Solar are now rolling out at numerous sites across the country.

Mark Rolt, ThamesWey’s Chief Executive Officer concludes “We were delighted to work with Joju Solar to install these batteries at our substation as part of an innovative trial of a centralised battery. The associated carbon savings from maximising the use of energy generated from a renewable energy technology supports our founding commitment to reduce carbon emissions in the Borough.”

Find Out More

 

On the grounds of Chilworth Manor

In Autumn 2011 Joju installed a 196 panel ground mounted solar system in the grounds of grade II listed Chilworth Manor, Surrey.

Background

Chilworth Manor is a historic country house located in Surrey. The manor, itself, is grade II listed by English Heritage. In 2011 Joju were commissioned to install a ground mounted solar array.

READ MORE

Pepsi turns Copella Green

PepsiCo install solar at their Copella Juice factory

Background

Corporate Responsibility is a key focus and a point of competitive advantage for many companies. Over the last twenty years multi-nationals have implemented more and more creative ways to lower their environmental impact, decrease their carbon footprint and demonstrate themselves as more socially responsible citizens. One of the simplest and quickest ways and wins for companies has been to look at ways of improving the efficiency of their own buildings and operations.

READ MORE

Marks and Spencer – Community Energy Scheme

Background

Historically, community energy initiatives have fallen into two categories, depending on where they draw their members from. Investors come from either the local area where the project is located or where the community is geographically scattered are made up of people with a shared passion. However, we’re proud to have helped M&S develop a new type of community energy scheme – where a corporate institution engages the community energy approach to finance renewable schemes.

READ MORE

Prodrive to the moon and back


The largest community-owned roof mounted solar array in the UK

Background

Prodrive is a world leading motorsport and technology business. They are best known for motorsport, but they are now a technology business working in a range of sectors with operations in Banbury and Milton Keynes employing more than 500 staff.

READ MORE